082 谬(上一章应该是081,序号错了)-《百家逐道》


    第(2/3)页

    “自此,我秦地便独占法、墨、唯物之尊,便是三家圣地了。

    “若学王尤在,或愿走此险棋。”

    听着韩孙的推演,没人敢说接茬,庞牧都闭目不敢言。

    倒是赢璃幽幽一叹:“老师又在开异态的玩笑了。”

    “哈哈。”韩孙大笑,“确实是玩笑,但也是铺陈。若真出现了那一刻,希望你们也想得如我这般清楚,当断则断,莫要耽误时机。”

    众人沉默之间。

    白丕再次折返跑了回来。

    “争锋了……”他呆呆说道。

    卡察!

    庞牧的杯子终于掉到了地上。

    韩孙则只一舒气,起身抬臂一斩:

    “法家,随我去那墨馆。”

    ……

    墨学馆。

    为了不影响范画时,清谈场地,连同题板被一同搬到了大堂中央。

    檀缨与吴孰子对席而坐。

    重整旗鼓后,范牙继续主持:

    “檀缨的解题,便为其论。

    “此为畅谈,吴孰子可尽驳之,檀缨亦可反驳。

    “对谈二人,既为两家魁首,又有根基之悖。

    “此谈,即争锋之谈。

    “争锋之间,恐有噬道、融道,还请二人二家,知之认之。

    “然此争只是学论之争,并非生死之争。

    “故任何一方,都可随时言败,不可武论。

    “若无异议。

    “巨子,请驳。”

    范牙话音落下的同时,吴孰子便展开质问:“所谓无穷小,若非0,当如何表述?”

    檀缨当即作答:“我们随意创造一个符号表述便是了。”

    “胡闹。”吴孰只澹澹摇头,继而说道:

    “数乃万物之本,数便是数,切实存在的数。

    “既存在,便可表达,如你我可被探知一样。

    “不可表达为谬,非数,如那神灵鬼巫不可被探知一样。”

    “我看到了,这也正是《吴孰算经》中的论说。”檀缨不紧不慢道,“你以为,一切数字皆可用‘两个整数之比’表达,不可表达的数字并不存在,数轴是连续、规律而又稠密的。”

    “是如此。”

    “而范画时在她所创的《流算》中,以两个不存在的数字相除,却能求得切实的结果,于你而言这便是谬上加谬,就算结果存在,也是谬论。”

    “是如此。”

    “好。”檀缨说着晃了晃头,“那么接下来,我将证明,你所谓的谬,是切实存在的,数轴并不连续,任何两个数之间,都充满了谬。”

    吴孰子只澹然抬手:“请。”

    檀缨:“圆周率可为谬?”

    吴孰子:“非谬。”

    檀缨:“那请举出它如何表达。”

    吴孰子:“任意一圆的周长,除以直径,便是它的比值,而任何比值最终都可以化为两个整数之比。”

    檀缨:“那么它到底是多少?”

    吴孰子:“要等我们做出完美的圆,辅以完美的尺才能测得。”

    檀缨:“完美的圆我们能做出来么?”

    吴孰子:“不能。但它存在,便如天道一般。”

    檀缨:“很好,我与范画时说的无限小,也正是这样的存在,你可理解一些了?”

    吴孰子:“数理之道殷实确凿,唯证可破。你在此含湖其辞,只是耽误所有人的时间罢了,莫学那名家。”

    檀缨:“谈不上耽误,我只是随便举一个谬数,岂料你竟如此坚称。”

    吴孰子:“那你又从何而知,圆周率为谬数呢?”

    檀缨苦笑:“我当然可证,但要用范画时的《流算》证。”

    吴孰子:“此为以谬证谬,不证也罢。”

    檀缨:“好了,我想到另一个谬数了。”

    吴孰子:“请。”

    檀缨:“勾股定理,可是谬论?”

    吴孰子:“此为实论。”

    檀缨:“那若勾1、股1、弦应为几?”

    吴孰子:“2的开方。”

    檀缨:“此数该如何用‘整数之比表达’?”

    吴孰子:“与圆周率相同,要等我们做出完美的三角,方可测得,最终的结果一定是可以用‘整数之比’来表达的。”

    檀缨:“不如说得再确切一些,2开方的最终结果,可以用一对‘互质的正整数之比’表达,对么。”

    吴孰子稍思:“对的,这个描述更为严谨。”

    檀缨:“那么这个结论,你可有证明?”
    第(2/3)页